Cyberdyne HAL

From HCE Wiki - The Human Cognitive Enhancement Wiki
Revision as of 10:07, 13 May 2016 by Haustein (talk | contribs) (added links to research to save them for later use)
Jump to navigation Jump to search
Hybrid Assistive Limb
Cyberdynehal 01.jpg
Category Limb-mounted
Developer Cyberdyne [1]
Announced 1997 (prototype)[2]
Released Developers:
Consumers: (not released)
Price 2000 USD (monthly)[3]
Operating system (unknown)
Sensors

bio-electric signals [4]

Weight 12000 g (Lower-limb model, both legs)[4]
Controls

user's brain signals [5]

Data available Limited
Risk factor Low
Standalone
http://www.cyberdyne.jp/english/

Cyberdyne Hybrid Assistive Limb, or HAL, is a powered, wearable exoskeleton designed to support and assist the muscles of the user. It is used to return the ability to move to persons who lost it due to spinal injury or a stroke. It can be used in mobility therapy and restoration, movement assistance for the elderly, and movement and strength enhancement for workers or incident response teams.

Main characteristics

Cyberdyne HAL is equipped with neurosignal sensors that pick up the neural signals from the user's spine and translate them into the movement of the motorized joints. The user is only required to think about moving their limbs. HAL is currently used in neuromuscular feedback therapy. There are also plans to develop a powered exoskeleton to enhance workers working with heavy weights,[6] or powered and protective exoskeleton for emergency and disaster responders.[7]

Purpose

Cyberdyne HAL is a powered exoskeleton used in mobility therapy and for movement and strength enhancement.

Company & People

The exoskeleton is developed by a Japanese company Cyberdyne Inc. The company was founded on 24 June 2004 and is headquartered in Tsukuba, Japan.[8]

  • Professor Yoshiyuki Sankai - President and founder
  • Fumiyuki Ichihashi, Shinji Uga, Hiroaki Kawamoto - Directors

Important Dates

Enhancement/Therapy/Treatment

Ethical & Health Issues

Public & Media Impact and Presentation

http://www.cyberdyne.jp/english/company/Media_list.html

Public Policy

Related Technologies, Projects or Scientific Research

http://www.ncbi.nlm.nih.gov/pubmed/?term=HAL%C2%AE+exoskeleton+training+improves+walking+parameters+and+normalizes+cortical+excitability+in+primary+somatosensory+cortex+in+spinal+cord+injury+patients.

http://www.ncbi.nlm.nih.gov/pubmed/24704677

http://www.ncbi.nlm.nih.gov/pubmed?term=Factors%20Predicting%20the%20Effects%20of%20Hybrid%20Assistive%20Limb%20Robot%20Suit%20during%20the%20Acute%20Phase%20of%20Central%20Nervous%20System%20Injury.

http://www.ncbi.nlm.nih.gov/pubmed/?term=Modification+of+hemiplegic+compensatory+gait+pattern+by+symmetry-based+motion+controller+of+HAL.

http://www.ncbi.nlm.nih.gov/pubmed/?term=HAL%C2%AE+exoskeleton+training+improves+walking+parameters+and+normalizes+cortical+excitability+in+primary+somatosensory+cortex+in+spinal+cord+injury+patients.

http://www.ncbi.nlm.nih.gov/pubmed/?term=Feasibility+and+efficacy+of+high-speed+gait+training+with+a+voluntary+driven+exoskeleton+robot+for+gait+and+balance+dysfunction+in+patients+with+chronic+stroke%3A+nonrandomized+pilot+study+with+concurrent+control.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1545505

http://www.tandfonline.com/doi/abs/10.3109/17483107.2015.1129455

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5953292&tag=1

http://link.springer.com/chapter/10.1007/978-3-642-34546-3_36#page-1

References